Internal Resistance MS

M1.
(a) (i) (use of $V=I R$)

$$
\begin{aligned}
& \mathrm{R}_{\text {total }}=1(\mathrm{ohm}) \\
& V=1 \times 1=1.0 \mathrm{~V}
\end{aligned}
$$

(ii) (use of $V=I R$)
$R=9.0 / 1.0=9.0 \Omega$
$r=9.0-1.0-6.0=2.0 \Omega$
or use of $(E=l(R+r))$
$9.0=1(7+r)$
$r=9.0-7.0=2.0 \Omega$
(iii) (use of $W=V / t$)
$W=9.0 \times 1.0 \times 5 \times 60$
$W=2700 \mathrm{~J} \checkmark$
(iv) energy dissipated in internal resistance $=1^{2} \times 2.0 \times 5 \times 60=600(\mathrm{~J})$ percentage $=100 \times 600 / 2700=22 \% \checkmark$ CE from part aii
(b) internal resistance limits current hence can provide higher current or energy wasted in internal resistance/battery less energy wasted (with lower internal resistance) or charges quicker as current higher or less energy wasted
or (lower internal resistance) means higher terminal pd/voltage as less pd across internal resistance or mention of lost volts \checkmark

M2. (a) (i) energy changed to electrical energy per unit charge/coulomb passing through
[or electrical energy produced per coulomb or unit charge] [or pd when no current passes through/or open circuit] (1)
(ii) $\quad I=\frac{6}{2.4}=2.5 \mathrm{~A}(1)$
(iii) (use of $\epsilon=l(R+r)$ gives) $\in=V+\operatorname{lr}$ and $8=6+\operatorname{lr}(1)$
substitution gives $8-6=2.5 r(1)($ and $r=0.8 \Omega)$
(b) (i) (use of $P=f R$ gives) $P_{\mathrm{R}}=2.5^{2} \times 2.4=15 \mathrm{~W}$
[or $P=V /$ gives $P=6 \times 2.5=15 \mathrm{~W}$] (1)
(allow C.E. for value of I from (a))
(ii) $P_{\mathrm{T}}=15+\left(2.5^{2} \times 0.8\right)(1)$
$=20(\mathrm{~W})(1)$
(allow C.E. for values of P_{R} and I)
(iii) $E=5 \times 2 \times 60=600 \mathrm{~J}(1)$
(allow C.E. for value of P from (i) and P_{T} from (ii))

M3. (i) $(V=I R$ gives $) \quad 12=(30+30+2)!(1)$

$$
I=\left(\frac{12}{62}\right)=0.19 \mathrm{~A}(1) \quad(0.194 \mathrm{~A})
$$

(ii) $\mathrm{V}_{\mathrm{PQ}}=12-(0.19 \times 2)(1)$

$$
=11.6 \mathrm{~V} \text { (1) }
$$

(allow C.E. for incorrect / in (i))
$\left[\right.$ or $\left.\mathrm{V}_{\mathrm{PQ}}=0.19 \times 60=11.6 \mathrm{~V}\right] \quad(I=0.194 \mathrm{~A}$ gives 11.6 V$)$
[$\operatorname{or} \mathrm{V}_{\mathrm{PQ}}=12 \times \frac{60}{62}=11.6 \mathrm{~V}$
(iii) $\quad\left(P_{A}=R R\right.$ gives) $P_{A}=(0.19)^{2} \times 30=1.08$ (1) $\quad \mathrm{W}$ (1)
[or $P_{\mathrm{A}}=\frac{V^{2}}{R}$]
(allow C.E. for incorrect / in (i) or incorrect V in (ii))
(iv) $\quad\left(E=P_{A} t\right.$ gives $) E=1.08 \times 20$ (1)
$=21.6 \mathrm{~J}$ (1)
(allow C.E. for incorrect P_{A} in (iii))

M4. (a) (i) work (done)/energy (supplied) per unit charge (by battery) (1)
(or pd across terminals when no current passing through cell or open circuit)
(ii) when switch is closed a current flows (through the battery) (1) hence a pd/lost volts develops across the internal resistance (1)
(b) (use of $\varepsilon=V+I r$)

$$
\begin{aligned}
& I=5.8 / 10=0.58(\mathrm{~A})(1) \\
& 6.0=5.8+0.58 r(1) \\
& r=0.2 / 0.58=0.34(\Omega)(1)
\end{aligned}
$$

(c) need large current/power to start the car (1) (or current too low)

internal resistance limits the current/wastes power(or energy)/reduces

 terminal pd/increases lost volts (1)M5. (a) (use of $E=V+I r$)

$$
12=V+420 \times 0.0095(1)
$$

$$
V=8.0(1) \mathrm{V}(1)
$$

(b) $\quad \rho=R A / I=1.6 \times 10^{-3} \times 7.9 \times 10^{-5} / 0.75$ (1)

$$
R=1.7 \times 10^{-7}(1) \Omega \mathrm{m}(1)
$$

\(\left.\begin{array}{l}M6. (a) (i) work done (by the battery) per unit charge (1)

or (electrical) energy per unit charge

or pd/voltage when open circuit/no current\end{array}\right\}\)| (ii)the resistance of the materials within the battery (1)
 or hindrance to flow of charge in battery
 or loss of pd/voltage per unit current |
| :--- |

(b) (i) (use of $E=V+I r$)

$$
12=V+800 \times 0.005(1) \text { (working/equation needs to be shown) }
$$

$$
V=12-4=8.0 \mathrm{~V}(1)
$$

(ii) (use of $P=P^{\prime} r$)
$P=800^{2} \times 0.005$ (1) (working/equation needs to be shown)
$P=3200$ (1) W (1) or $\mathrm{J} \mathrm{s}^{-1}$
(c) car will probably not start (1)
battery will not be able to provide enough current (1) or less current
or lower terminal pd/voltage

M7. (a) mention of pd across internal resistance or energy loss in internal resistance or emf $>\vee \checkmark^{\prime}$
pd across internal resistance/lost volts increases with current or correct use of equation to demonstrate \boldsymbol{v}^{\prime}
(b) (i) y-intercept $1.52 \mathrm{~V}(\pm 0.01 \mathrm{~V})$
(ii) identifies gradient as r or use of equation $\boldsymbol{v}^{\text {r }}$
substitution to find gradient or substitution in equation \checkmark
$r=0.45 \pm 0.02 \Omega \checkmark$
(c) (i) same intercept \checkmark^{\prime}
double gradient (must go through $1.25,0.40 \pm 1.5$ squares) \checkmark^{*}
(ii) same intercept horizontal line
(d) (i) (use of $Q=I t)$

$$
Q=0.89 \times 15=13 \quad \checkmark
$$

(ii) use of $P=\operatorname{Pr}{ }^{\prime}$

$$
\begin{aligned}
& P=0.89^{2} \times 0.45 \\
& P=0.36 \mathrm{~W}
\end{aligned}
$$

M8. (a) battery has internal resistance (1) current passes through (this resistance) (1) work done/voltage lost, which reduces the value of the emf (1)
(b) (i) circuit diagram to show:
two cells in series (1)
two resistors, each labelled $r(1)$
(ii) (use of $P=I V$ gives) $1.6=2.5 I(1)(I=0.64(\mathrm{~A}))$
(use of $\epsilon=V+I r$ gives) $3.0=2.5+0.64 \times 2 r(1)(1)$
$0.5=1.28 r$ and $r=0.39 \Omega(1)$
[or $R_{\text {bulb }}=2.5^{2} / 1.6=3.9(\Omega)$ and $2.5=3.9 \times /$ gives $I=0.64(\mathrm{~A})$ 'lost volts' $=(3-2.5)=0.5(\mathrm{~V})$ i.e. $0.25(\mathrm{~V})$ per cell $0.25=0.64 r$ and $r=0.39 \Omega$]
(c) $\epsilon=V+I r$ gives $V=-I r+\in$ (equation of straight line) (1) intercept on y-axis gives $\in(1)$ gradient gives (-)r(1)

M9. (a) $V=-I r+\in(1)$
(b) straight line (within 1st quadrant) (1) negative gradient (1)

(c) \in : intercept on voltage axis (1) r : gradient (1) gradient(1)

M10. (a) (i) $\quad 6.0(\Omega)(1)$
(ii) $4.5(\mathrm{~V})(1)$
(iii) (use of $I=V / R$)
$I=4.5 / 6.0=0.75(\mathrm{~A})(1)$
current through cell $A=0.75 / 2=0.375(A)(1)$
(iv) charge $=0.375 \times 300=112$ (1) C (1)
(b) cells C and D will go flat first or A and B last longer (1)
current/charge passing through cells C and D (per second) is double/more than that passing through A or $B(1)$
energy given to charge passing through cells per second is double or more than in cells C and $D(1)$ or in terms of power

M11. (a) (i) electrical energy produced (in the battery) per unit charge (1)
[or potential/voltage across terminals when there is no current]
(ii) there is a current (through the battery) (1)
voltage 'lost' across the internal resistance (1)
(b) (i) $\quad \in=V+\operatorname{lr}(1)$
(ii) labelled scales (1)
correct plotting (1)
best straight line (1)
ϵ : intercept on y axis $(1)=9.2(\pm 0.1) \vee(1)$
$r:(-)$ gradient $=\frac{9.2}{0.65}=14.2 \Omega(1)($ range 14.0 to 14.3$)$

